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Abstract. It is shown that the molecular energy calcu-
lated at the self-consistent-field level can be strictly
expressed as a sum of one- and two-atom energy
components in the framework of Bader’s topological
theory of atoms in molecules (AIM). The expressions of
our recent “‘chemical energy component analysis” can be
obtained from the AIM ones as some linear combination
of atomic orbitals mappings of the integrations over the
atomic basins.
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1 Introduction

At the workshop [1], when one of us presented his lecture
about our recent “‘chemical energy component analysis”
[2, 3], Richard Bader asked whether that scheme can also
be used in his topological theory of atoms in molecules
(AIM theory). In the closing discussion of the workshop
it was reported that “‘yes, the approach is applicable to
the AIM theory — moreover, in the AIM case the
decomposition is exact”. The conjuncture has also been
made that the expressions of the “chemical energy
component analysis” (CECA) presented at the workshop
can be obtained as linear combination of atomic orbitals
(LCAO) mappings of the AIM energy components.

The aim of this note is to present the (very simple)
proof of the energy decomposition in the AIM frame-
work and to discuss how the CECA expressions can be
obtained as some LCAO mappings (or approximations)
of the AIM ones.
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2 Energy decomposition in the AIM theory

For the sake of simplicity we speak about AIM basins,
but our considerations apply to any theory (e.g., electron
localization function) in which the physical space is
decomposed into disjunct basins (or domains) which can
be put into a one-to-one correspondence with the nuclei
of the molecular system. We may call these domains
“AIM atoms”. We consider explicitly the closed-shell
restricted Hartree—Fock case, but the considerations also
apply with trivial modifications to the unrestricted
Hartree-Fock case'.

If there are n doubly occupied molecular orbitals
(MOs), ¢,, the total self-consistent-field (SCF) energy is
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Here / is the one-electron Hamiltonian and we use the
[12|12] convention for the two-electron integrals:
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We can decompose the integral
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into a sum of integrals over the individual atomic
domains, Q4:
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! The approach can be generalized to correlated wave functions, too



Here and further on subscript 4 indicates that the
integration is restricted to the Ath atomic basin. Quite
similarly, the two-electron integrals can be presented as
double sums over the “AIM atoms’:
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In the last expression the first subscript indicates the
domain of integration for electron 1, the second that for
electron 2. On substituting Egs. (4) and (5) into Eq. (1),
we obtain
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Now, we observe that the one-electron Hamiltonian, A,
can be presented as
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where A = lA ZA 1s the intraatomic one-electron

Hamiltonian correspondlng to atom A. By using this, the
integral (p,|h|p), can be written as a sum of one-center
and two-center components:
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Analogously, the two-electron integrals on the right-
hand-side of Eq. (6) are either of one- or of two-center
character, depending on whether 4 = B or not.
According to these considerations, in the framework
of the AIM theory the SCF energy can be strictly de-
composed into one-center and two-center components:

E= ZEA+ZEAB ) )
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where (utilizing in E 45 the symmetry of the two-electron
integrals for the interchange of the electrons)

Eq=2 ZW’;’VA’A @) 4

i= l

Z [0:0)10:0,) 44 — [0:0)10,0)4.4) (10)

361

Z
EAB - _22 q)z z <(1D1|R |(pl>B)
+2 Z [0:0,10:01].4 5 — [9:0)00:].4.5)
ZAZB
. 11
7 (11)

We consider this simple result to be of considerable
conceptual chemical significance.

3 LCAO mapping of the AIM integrals

The “AIM atom” is essentially a nucleus and the
corresponding atomic basin defined in the physical
space, while in the Mulliken-type analyses one identifies
the atom with the nucleus and the subspace of the one-
electron Hilbert space spanned by the basis orbitals
centered on that nucleus.

As noted in Ref. [4], there is a mapping between the
AIM theory and Mulliken-type analyses permitting one
to find a one-to-one correspondence for quantities such
as atomic populations, bond orders and valences defined
in these two frameworks. This was formulated [4] in
terms of atomic basis orbitals, y,, as
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where S, = (y,|x,) is the conventlonal overlap matrix
element and the function y4 introduces a summation
restriction: y4 is 1 if orbital y, is centered on atom A4 (this
we shall denote as v € A) and 0 otherwise (if v & 4). The
same mapping has been used, for example, in Ref. [4], to
obtain some LCAO approximations of the AIM inte-
grals.

The important property of this mapping is that it puts
into correspondence the AIM atomic population with
Mulliken’s gross atomic population. This is in agreement
with the fact that both these populations sum over the
total number of electrons in the molecule?.

The molecular orbitals are defined by their expan-
sions

=> i (13)
u

and, using Eq. (12), one has for an integral over the
MOs the mapping
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2If we were to introduce restrictions for both indices u and v in
Eq. (12), we would get Mulliken’s net atomic populations, which
does not satisfy this requirement
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where we have introduced the “piece” ¢? of the
molecular orbital ¢; corresponding to the individual
atom 4:
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Now, we shall consider the problem how one can
generalize the mapping (Eq. 14) for cases when we are
interested in integrals other than overlaps. In order to
get such a generalization, we observe that Eq. (14)
implicitly contains a projection operator:

(o)), = (i) = (pi|Plo)) = (P'olof)y,  (16)
where
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is the projector on the subspace of basis orbitals centered
on atom 4. The inverse of the atomic overlap matrix, Sy,
appears in this expression because the basis orbitals on A
are, in general, not orthogonal Here and further on we
use the shorthand S = (Sy") . for the elements of
the inverse overlap mdtl‘lX corresponding to the atomic
or diatomic fragment, X.

In analogy with the last term in Eq. (16) we get the
generalization of the mapping appropriate for our pur-
pose:

(pill'p;), = (P'oll¢}) | (18)
where L is any one-electron linear operator of atomic
character related to the same atom on which (pf is
centered. It shows that the molecular orbital ¢, contrib-
utes to the value of the intraatomic quantity L? to the
extent of its projection P4¢, on the subspace of the atom
in question.

Using the turn-over rule once more, we get the
expression actually used in the following derivations:
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This form indicates that one cons1ders only that part of
the “intraatomic” function L ¢? which can be expanded
in the atomic basis. As the basis on atom A increases and
approaches completeness, the projector P, in principle,
tends to the unit operator. (The practical b4151s sets are
far from this limit, however.) The presence of the
projector in Egs. (18) and (19) provides that the atomic
components contain only intraatomic matrix elements of
operator L — and different quantities formed from the
overlap matrix.

If the operator L? is related to another atom than ¢ =
like the nuclear attraction terms in Eq. (11) — then one
has to use pI‘OJeCtOI' P8 on the orbitals of the diatomic
fragment AB, i.e., on the union of the basis sets centered
on atoms A and B. Its definition is quite analogous to
Eq. (17). Then we obtain
(@ilL®|o;) , = (@:PPL¢?) (20)
For the two-electron integrals one has to consider
projectors for both electrons; the corresponding mapping is
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where we have taken into account that the integral
considered is, in general, of diatomic nature. (If 4 = B,
one has to use P instead of P, of course.)

It is to be stressed, that these mappings may be
considered as some approximations to the AIM inte-
grals, but do not represent equalities.

4 LLCAO energy components — the simple expression

Substituting the mappings (Eqs. 19-21) into Egs. (10)
and (11) of the one- and two-center energy components,
one obtains an approximate energy decomposition
formula for the LCAO case:
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By substituting the expression of the projectors and
performing straightforward manipulations we can pre-
sent this result as
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where
Hy = (i |2) (27)
and we have introduced matrix BY (X = 4 or 4B)
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representing a generalization of the usual ‘“‘density
matrix”’, D,
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Matrix BXA contains matrix AX closely related to the
projector PX
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This result essentially coincides with the energy
decomposition formula of Ref. [6], the analysis of the
two—center exchange components of which led to
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the introduction of the useful bond order index [7, 8].
However, the few exploratory calculations performed
indicate that this formula — although it qualitatively
accounts for the main bonding features of a molecule —
does not give a particularly good approximation of
the total energy, at least for moderate basis sets.

5 Extended diatomic energy components

The mapping formula (Eq. 19) contains a projector on
the atomic subspace, i.e., the component (1 —P*)L*¢?,
which lies in the orthogonal subspace, is completely
neglected, even if it enters a two-center integral. As we
are interested in approximating the total energy as a sum
of one- and two-center components, it is a legitimate
modification of the approach if one also conserves the
diatomic components of that function — the additional
terms obtained in this manner should obviously be
assigned to the two-center energy contributions. These
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terms describe the effects of the basis extension from the
atoms to the diatomic fragments and should have a
decreasing importance as the basis set on each atom
improves.

It is easy to see that one has the equality

+Z( 5|14 !
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The first term on the right-hand side of this expression is
the one-center term formed according to the mapping
(Eq. 19) and it was already included in the one-center
energy component (Eq. 25), while the second represents
the sum of the diatomic basis extension terms discussed
earlier. (The term with B =4 is omitted as it would
vanish according to the properties of the projectors.) By
applying this result to the intraatomic Hamiltonian as
well as its two-electron analogue, one obtains E,p with
several additional terms:
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This is the formula for the two-atomic energy contribu-
tion used in the recently introduced “‘chemical energy
component analysis” [2, 3]. (The one-center contribu-
tions coincide with Eq. 25) This scheme [2, 3] permits
one to express the total molecular energy approximately
but to good accuracy as a sum of atomic and diatomic
contributions, the computation of which requires the use
of one- and two-center integrals only. This analysis is a
very promising tool, as it is able to give us insight into
the fine details of the different intramolecular interac-
tions; in particular, one can get much more information
about the nonbonded interactions than is provided by
other tools such as bond order indices or overlap
populations.

6 Conclusions

It is shown that the molecular energy calculated at the
SCF level can be strictly expressed as a sum of one-
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and two-atom energy components in the framework of
Bader’s topological theory of AIM. By introducing the
LCAO mapping of the AIM integrals, at first one gets
a relatively simple expression already derived in a
different framework [6]. Although this expression
served as a background for defining the useful bond
order indices, it is not particularly accurate as an
energy decomposition scheme, at least for moderate
basis sets. By introducing an extension of the integral
approximation scheme in such a manner that all two-
center integrals are conserved, one arrives at the
expressions of the recently proposed ‘“‘chemical energy
component analysis” [2, 3], which permits one to
express the total molecular energy approximately but
to good accuracy as a sum of atomic and diatomic
contributions and provides an insight into the fine
details of the different intramolecular interactions.
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